US006636840B1

a2 United States Patent

Goray et al.

(10) Patent No.:
5) Date of Patent:

US 6,636,840 Bl
Oct. 21, 2003

(54

(75)

(73)

@D
(22

(63)

D
(52)

(58)
(56)

COMPUTER SYSTEM CONFIGURED IN
SUPPORT OF SOLVING NP-COMPLETE
PROBLEMS AT HIGH SPEED

Inventors: Ivan Ivanovich Goray, St. Petersburg
(RU); Leonid Ivanovich Goray, St.
Petersburg (RU)

Assignee: International Intellectual Group, Inc.,

Penfield, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 09/420,982

Filed: Oct. 20, 1999

Related U.S. Application Data

Continuation-in-part of application No. 09/006,367, filed on
Jan. 13, 1998, now abandoned.

Int. CL7 oo GO6F 15/18
US.Cl 706/12; 706/11; 706/14
Field of Search 706/11, 12, 14

References Cited

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

Christopher Umans et al; Hamiltonian Cycles in Solid Grid
Graphs; Oct. 20, 1997; IEEE; 0272-5428/97; 496-505.*

John Franco; The brick wall: NP—completeness; Oct. 1997;
IEEE; 0278-6648/97; 37-40.*

* cited by examiner

Primary Examiner—Paul P. Gordon
Assistant Examiner—Joseph P. Hirl

(74) Antorney, Agent, or Firm—Wall Marjama & Balinski
LLP

57 ABSTRACT

The present invention is a computer system and associated
method configured to in support of solving NP-complete
problems such as minimal Hamiltonian cycle type problems.
According to the invention, a primary network represented
by the matrix of its edges is recorded in the memory space,
and an equivalent representation of the primary network is
formed as a set of subnetworks. Nodes of a present path are
reordered according to a set of reordering rules and edge
weights of edges of the set of subnetworks are changed
according to a set of edge weight changing rules.

5943,652 A ¥ 8/1999 Sisley et al. ...ocovvurinnnne 705/9 48 Claims, 17 Drawing Sheets
Cio=46-46=0 SUBNETWORKS

Cp3=29-46-37=-54 WEIGHTS 1 2 3 4 5 8
Ci2 0 0 -20 -46 -14 52

Ci3 0 38 0 -106 15 -16

Cis 0 18 24 0 39 -66

Cis 0 62 -15 73 0 -76

Cis 0 2 -8 80 22 0
—_C23 54 0 0 -50 9 -40

Cos 410 | 0 | 80 | 0 | -41 | -86
Cas -30 0 -9 7 0 -16

Cas 90 0 -44 60 -38 0
Cuy -50 22 0 0 48 -50
Css -59 87 0 -82 0 69

Cs 66| -14 0 96 | 15 0
Css -83 -35 -48 0 0 -83

Cag -76 32 -34 0 29 0

Css -66 -38 -15 63 0 0

Cog=27-71-22=-66

U.S. Patent Oct. 21, 2003 Sheet 1 of 17 US 6,636,840 B1

10
N

12 14
! 3

l PROCESSOR l ~1 MEMORY ‘

FIG. 1

U.S. Patent Oct. 21, 2003 Sheet 2 of 17 US 6,636,840 B1

(_ START)
!

RECORDING STEP
STORE WEIGHTS MATRIX |Cly AND 20
INITIAL MINIMAL CYCLE H{1-2-3-(N-1)-N}
INTO MEMORY SPACE

N

4

FORMATION STEP
REPRESENT PRIMARY NETWORK [Cly }22
BY A SET OF N SUBNETWORKS

A

IMPROVEMENT STEP

¥

SUBJECT PRESENT MINIMAL PATH Hyyn |- 24
TO REORDERING RULES

EXIT
CONDITION)SATISFIED YES
NO ‘ 34
Y Y 4
TRANSFORMATION STEP STORE Hpin
APPLY PRESENT SET OF SABNETWORKS 26 | INTO MEMORY
TO EDGE WEIGHT CHANGING RULES SPACE

|

EXIT

COND!TSON)SATISF!ED YES

(E;\;D)

FIG. 2

U.S. Patent Oct. 21, 2003 Sheet 3 of 17 US 6,636,840 B1

U.S. Patent Oct. 21, 2003 Sheet 4 of 17 US 6,636,840 B1

THE WEIGHT
OF ALL THE EDGES
ARE REDUCED IN 46

US 6,636,840 Bl

Sheet 5 of 17

Oct. 21, 2003

U.S. Patent

G 9Ol4

0 0 e] Gb- | 8¢ | 9%)

0 62 0 yE- 2€ 9/- %0

£8- 0 0 8- | ot | ¢F 9

0 Gl 96- 0 pi- | 99 %9

69- 0 78" 0 19 | 65)

05- 8y 0 0 7 05-)

0 ge- | 09 | v 0 06")

91- 0] 6 0 0F- 529

98- | M 0 08- 0 0Ll ¥29
{ or | 6 | 05 0 0 pe- T~

0 7 08 8- A 0 IR

9L 0 el | G- | 29 0 5oy
| 99 | 6¢ 0 V.| 8l 0 ")
A Gl | 90V~ 0 ge- 0 €0
* 75 | vi- | o | 0T 0 0 Ty

Z |

9 § 4 ¢ SLHOMEM

_ SHYOMLIANANS

99-=2¢-VL-12=%D

yG-= /€ 9F - 62=50D
0=9y-9y =40

U.S. Patent Oct. 21, 2003 Sheet 6 of 17 US 6,636,840 B1

FIG. 6B FIG. 6C

U.S. Patent Oct. 21, 2003 Sheet 7 of 17 US 6,636,840 B1

U.S. Patent Oct. 21, 2003 Sheet 8 of 17 US 6,636,840 B1

SUBNETWORKS
WEIGHTS

1 2 3 4 5 6
Ci2 0 0 -20 -46 L3 -52
C13 0 -38 0 -106 15 -76
Ci4 0 18 -24 0 39 -66
Cis 0 -42 -15 -73 0 -76
Cis 0 2 -8 -80 22 0
Co3 -54 0 0 -50 11 -40
Cas -110 0 -80 0 21 -86
Cas -50 0 -1 -13 0 -36
Cxs -90 0 44 -60 -18 0
Caq -50 22 0 0 48 -50
Cas -59 47 0 -82 0 -69
Cas -66 -14 0 -96 15 0
Css -83 -15 48 0 0 -83
Cap -76 32 34 0 29 0
Csp 66 A8 -15 63 0 0

FIG. 8A

U.S. Patent Oct. 21, 2003 Sheet 9 of 17 US 6,636,840 B1
SUBNETWORKS
WEIGHTS

1 2 3 4 5 6
C12 0 0 -15 46 15 -69
Ci3 0 15 0 49 15 -69
Cia 0 18 -15 0 15 -69
Cis 0 15 15 -49 0 -69
Cis 0 15 -15 49 15 0
Ca3 -59 0 0 -46 15 -89
Cos -62 0 18 0 12 72
Cos -59 0 -15 -46 0 -69
C2s -59 0 15 46 15 0
Cas -59 18 0 0 15 -69
Cas -59 15 0 49 0 -06
C3s -59 15 0 49 15 0
Css -59 18 -15 0 0 -69
Cas -59 18 -15 0 15 0
Csg -59 15 -15 49 0 0

FIG. 9

U.S. Patent Oct. 21, 2003 Sheet 10 of 17

NOWNNSSOMNOTONYTNOTONTNTCOND
O~ OME NN WONATOMOOM— MNNO T O
— NN o~ ~N NN ~— OONNANCNANN
W OTOINDTAOOOMN N TOO N T WO < <
— OO N N — N Rl N~
N O I~ WM OO [t O« O o (<o}
NI 2-REQRITIE TR2RELGRKLS°=2d
NOoOOHAOOOOTOMO—ONRE O NOWN—M<TOHO©MT—
&N T MO NMN NN — N -— N N~ -— N
T RO OOONOWONNTULIOODONMNDD —O
N~ ONN~ M NN N -~ N = v = o N~
LTHATODONONMTOOTOHOOOMIDWUOINO—ONOO
- e v NN Al el i el A ol N~ -
ON = OOTHDODOP~~-F~OWNOCONMAMR N MDDOOO
N O NN ~— [K9] D~ NONKN ™~
ATV DONT—ANWNOO~EMNMOWWVPOWONOODOO
o~ NN ~— N o~ v NN~ v
OUNDNYRNOOWVWS LT TOOI-NOTOOOOCOO
N N N (N~ ON NN~~~ N~
ONOMTN T~ OMNOMOUWINNNI O MNNOOOOOO
— NN NN «— v— O\
COMNMNOOTOMMNNNNOVDWS N NOT - O OO0 OOO0O
NN NN N ™ — N v v v O\
OMNMNOMOT—ONMNMOMOVONT~TNDNOOODODOOO
DNN™ v~ - N N~ —
chq'comv—mgmmwmwooooooooooo
) — v — AN N - — N
—ONTWUNONMNOTONRETNOOO0O0OOOOOO0O
-~ O v ™~ — NN~ o~

OOoOo
N

ONMNMUD— TN T~ OO0 OO0 O0COCOOOOOOO
O = v O\ T — NN

T OMODWONMNODNDOOOOODOOOOOOODOOO
-— N - N o~

TN T~ O TOOOOCOOOOCOO0O0O0OO0O0OOoOOo
hoaadh -
VWO D000 O000O00000O0000 00000000
~— «— N N~
R—lcamooommoocoocoooooooooooo
 d -
VO~ O

~

—OOWVOOOOOOOOODOOOD OO0 OO
N ™ () —

TOOOODOOOOOOOOOOCOOODOOO
-~

mmamoooooocoocoooooooccoo
:QOOOOOOOOOQOOOCQOQOOOOOO
zgoOOOOOQOOOOQOOOOOOOOOOO
gOOOOQOOOOOOOOOOOOOOOOOOO

OO0 ODOOOOCODOOOOO0OOOOOOCOoOOOOo

US 6,636,840 Bl

80000
OCOoOOoOODO
OO0 O0O
OCOoOOoOOoOO
(e Ren Ran 3 oo N an |
[Jer J oo Yoo ¥ o }
OO0 OCC
OCOOoOOOoO
OO0
OCOO0OO
OO OO
OO0 OCO

QOO OCo

FIG. 10

COO0OCO
(o= s Y o N e ¥ e]
OOoOOO0O
ocCooOooO
OOOOO
OO0 OOoO
OQOoOOCQ
QOO OO
OCOOoOO
OO0 OoOO
QOO OO
OO OOoOO
QOO

OCODOO

US 6,636,840 Bl

Sheet 11 of 17

Oct. 21, 2003

U.S. Patent

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

OO0 OO OO OOOOOOODOCOOOOOCOOOOCOOOOOOOOOOOOOOOOO0O

A
[h)
O [«2]
=DM ﬂ <t (O O O O
Rl ol (o] -~
- Lol - aad
M T O ™M P NOOOO
MO P~ = (52
- -— (V] had
Lo e - - -~
[oy € P o
NI~ O ™ WO
- - - o
o~ (=2
829537035
O v O\ o= o= v~ od b vl
(e} (2]
13916342 N
L
SBIBELX
- T
3663%0
P v U0 O
NCO UM
- -
o™ (22X §
7%1
5 h 0 B
- -
(a2}
[SE=
N O
—

840
568
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

%D00
N

OO LOOOOOOCOOCLOCOOOLOOOOOOOOOOOLOLCOOOOOOOOLOOOCOOC OO e

U.S. Patent Oct. 21, 2003 Sheet 12 of 17 US 6,636,840 B1

(1624 1013 257 658 225 85 1878 4939 672 1143 1001 2759 596)
1517 916 53 456 92 276 1858 4855 518 893 843 2845 539
1211 738 617 307 615 843 1693 4492 426 349 549 2839 624
1820 1213 460 888 451 228 2028 5110 895 1373 1220 2826 79
769 814 1399 915 1364 1601 1358 3746 925 470 653 2590 1092
1007 777 1067 640 1052 1286 1572 4135 698 138 559 2790 900
533 508 1375 1004 1276 1425 530 3612 881 1148 720 1593 797
636 1155 2109 1668 2017 2188 288 2833 1564 1608 1295 1277 1536
1765 1154 319 781 329 92 2016 5080 805 1252 1136 2874 737
788 1383 2346 1671 2261 2450 645 2559 1782 1716 1480 1474 1789
1252 668 334 175 291 527 1634 4589 259 636 568 2689 363

96 584 1546 1078 1462 1655 518 3358 984 1011 694 1749 994
1380 862 468 361 492 700 1834 4680 489 543 696 2945 652
1161 561 404 158 329 054 1516 4499 166 661 497 2158 230
1735 1126 347 778 337 116 1971 5042 791 1260 1120 2814 707

0 611 1565 1084 1485 1686 589 3338 998 971 692 1821 1028
S17 878 1075 974 3942 408 666 222 2102 418
508 103 232 1898 4903 568 946 894 2871 578

0 455 690 1491 4418 128 502 395 2584 316
236 1802 4820 496 924 827 2767 482

0 1955 5009 717 1159 1049 2845 661
0 3083 1377 1515 1147 1232 1319
0 4337 4175 4023 2814 4349
0 569 332 2458 208
0 443 2718 761
0 2309 450
0 2330

&

CONTINUE (FROM FIG. 11A)
(TOFIG. 11C)

COCODOOOOOAUOOOOODOOOOOOOOOOOO QOO OOOOOCOCOOO
OCOOOOOCOOOOOOOOOOOOOOOOOCOOOOOOOOO OO0
OO OOOOOALOUOOOOOOOOOO OO ODOOOOOOOOOOO
OO OOOOCOOOOOOOOLQOOOOOOOOLOODOOQOOOO
OOOQOOOOOODOCOOOOOQQOOOOOOOOOoOOoOOLOoOOoC
OOOCOOOOOOOOOOOOULOOOOOOOOOOOOOOCO

OO OOOUOOOLOOOLOLOOLOOLOOOOLOOOOOOOO

QO OOOCOOODOODOOOOOOOOOOOOOOOO0O

OOOOOOODOOOOOOOOOOOOOOOOODOOCOOOO
DO ODOOOOODOOOOOODODOOD
COOOOOOOOOOOOOCOOOODOOOOOO
OO OOOOODOOOOOODOODOO

OO OOCOOCOOOOOOOOOCO OO OO

FIG. 11B

U.S. Patent

CONTINUE (FROM FIG. 11B)

1182
1075
832

1383
729

716

463

1015
1322
1224
816

425

979

719

1295
444

169

1122
654

1041
1243 1166
860 1314

3780 4036
559 434

687 203

284 266

2034 2514
587 662

0 486

114
920
456

1363
441
297
948

1415

1257

1543
641
814
645
624

1254
781
480
973
476
930

O OOOOOOOOOOOCOOOOCOOOO0O
OOOODODOOOODOOOOOOOOOOOO

787
126
697
979
996
874
616
1343
928
1596
516
803
m
290
896
840
238
767
411
674
853
1131
4155
282

Oct. 21, 2003

986 127
716 417
147 962
1213 136
690 1678
312 1389
1257 1370
1790 2145
1081 153
1921 2426
491 622
1186 1642
328 840
557 612
1008 88
1157 1683
751 1076
765 384
410 764
761 349
990 174
1672 1899

826
598
217
1056
750
464
1029
1630
942
1803
322
1028
362
334
944
1018
521
651
175
613
850
1481

4397 4977 4330

510 263

250

743 224 1257 326
344 538 1086 336
2177 2848 2728 2622

193
406
599

0

OO OOOOOOOOOOOCOOOOOO

717 659
817 1246
378 1237
757 842

0 1107

OO OOOOOLLOAUAOOOOO
OO OOOOOOODOODODOO

621
323
435
264
936

OO OO0 ODOOODODOOOQOOOO0

FIG. 11

Sheet 13 of 17

1361
1180
157
1583
357
504
801
1139
1493
1244
899
555
944
850
1481
503
473
1233
724
1176
1404
1072
3735
683
474
365
2298
814
372
302
683
677
1450
602

2383 2153
2372 2004
2196 1587
2521 2362
1767 865
2034 1239
1038 1093
401 735
2519 2281
566 580
2148 1725
981 659
2344 1777
2031 1659
2470 2269
1026 582
1487 1152
2411 2056
2001 1550
2314 1989
2461 2207
515 904
2637 2907
1892 1493
1993 1268
1651 1162
912 2002
1833 1566
1365 982
1796 1132
1646 1330
2165 1490
2396 2221
1987 1438

0 1530 836

QOO0 OO OOOOOO0O

0 1094
0

DOOODOOOOODOCOOOO

0
0
0
0
0
0
0
0
0
0
0
0
0
C

1328
1280
1124
1500
983

1081
170

789

1468
1061
1050
320

1254
933

1429
339

392

1322
807

1229 298
1400 63
584 2012

3612 5069
792 781

936 1219

583 1113

1727 2883
47 122

308 1706

794 1228

554 915

1121 1046
1366 177
908 911

633 1468

1099 2516
978 2271

0 1459

133
330
898
189
1662
1344
1481
2246
39
2511
589
1717
749
617
95
1749
1138
282
752

OO OO0
OCOODODOOOODOCOOO

US 6,636,840 Bl

546

256

351

755

1156
807

1375
2051
612

2249
248

1459
176

380

642

1460
900

294

383

333

527 383

1873 1861
4786 4825
496 193

699 805

768 802

2938 2884
610 557

1037 1052
771 850

764 733

495 617

674 528

458 527

1059 1123
2387 2376
1896 1965
1288 1278
574 433

0 145

40
110
470
611
1266
923
1348
2056
471
2274
236
1477
316
344
498
1488
901
151
407
191

OO ODOOOOO
OO OODODOOOO0O

(TO FIG, 11D)

U.S. Patent Oct. 21, 2003 Sheet 14 of 17 US 6,636,840 B1

2484 2421 1933 1776 844 975 1025 1166 173 308
2399 2392 1870 1627 704 949 738 1028 1290 27
2083 2180 1582 1229 510 906 2290 724 696 544
2664 2570 2135 1986 1061 1146 1241 1378 375 525
1461 1700 1071 601 801 1046 802 615 1465 1319
1805 1988 1358 926 649 1008 408 642 1142 991
1192 1072 694 815 739 388 1434 597 1376 1317
446 349 296 773 1388 1139 1964 1107 2123 2042
2625 2559 2094 1913 980 1115 1101 1304 237 389
102 433 429 794 1599 1415 2085 1287 2370 2273
2138 2158 1611 1348 439 748 563 756 393 254
900 953 370 381 802 646 1362 504 1571 1474
2260 2336 1750 1416 624 997 313 885 553 405
2043 2045 1514 1281 350 620 663 676 440 331
2530 2513 2059 1892 962 1075 1127 1283 261 410
886 985 371 285 814 703 1330 499 1595 1491
1484 1491 953 781 239 237 927 208 987 892
2447 2433 1916 1678 753 987 781 1078 86 80
1971 2006 1447 1173 279 631 536 585 562 428
2363 2339 1831 1610 679 830 801 1005 110 96
2552 2497 2021 1829 895 1049 1014 1220 147 299
735 542 403 815 1213 911 1851 975 1903 1836
2458 2560 2989 3263 4152 3966 4538 3833 4930 4830
1883 1899 1355 1114 181 508 652 510 606 493
1805 1957 1334 931 518 889 370 556 1018 867
1578 1640 1059 784 160 448 716 192 937 817
1482 1041 1561 2028 2330 1949 3026 2153 2846 2831
1291 1856 1360 1191 292 409 852 586 586 519
1324 1357 796 614 376 333 996 134 1151 1050
1635 1764 1148 774 382 713 549 353 1034 893
1698 1665 1167 1019 225 231 916 431 780 705
2012 2139 1526 1144 547 946 178 697 844 691
2529 2441 2000 1830 917 1011 1150 1242 298 434
1800 1975 1388 1068 295 694 422 523 715 571
1335 1486 860 472 526 698 841 267 1285 1153
991 145 697 1173 1726 1424 2342 1472 2414 235%
622 983 501 378 1312 1280 1634 987 2099 1977
1163 1112 640 670 631 354 1300 440 1344 1257
2613 2554 2082 1892 959 1107 1063 1284 201 354
2347 2390 1827 1526 663 895 483 961 380 240
2374 2389 1848 1580 671 961 630 992 236 96
0 443 531 878 1699 1518 2175 1386 2472 2374
632 1100 1727 1451 2313 1454 2442 2369
476 1172 991 1697 867 1940 1845
0 933 929 1301 609 1721 1600
0 0 400 74 326 783 678
0 01115 432 991 928
0 0 0 876 86 718
0 0 0 0 1116 1002
0 0 0 0 o0 152

FIG. 11D

CONTINUE (FROM FIG. 11C)

OO OO OOO
ODOOODODOO
OO0 OOOQ

U.S. Patent Oct. 21, 2003

ALBANY
ANNAPOLIS
ATLANTA
AUGUSTA
AUSTIN

BATON ROUGE
BISMARK
BOISE
BOSTON

FRANKFORT
HARRISBURG
HARTFORD
HELENA
HONOLULU
INDIANAPOLIS
JACKSON
JEFFERSON CITY
JUNEAU

PHOENIX
PIERRE
PROVIDENCE
RALEIGH
RICHMOND
SACRAMENTO
SALEM

SALT LAKE CITY .
SANTAFE

Sheet 15 of 17

US 6,636,840 Bl

CARSON CITY
CHARLESTON
CHEYENNE
COLUMBIA
COLUMBUS
CONCORD
DENVER

DES MOINES
DOVER

LANSING
LINCOLN

LITTLE ROCK
MADISON
MONTGOMERY
MONTPELIER
NASHVILLE
OKLAHOMA CITY
OLYMPIA

SPRINGFIELD
ST. PAUL
TALLAHASSEE
TOPEKA
TRENTON
WASHINGTON

FIG. 11E

US 6,636,840 Bl

Sheet 16 of 17

Oct. 21, 2003

U.S. Patent

(az) Ol oL

Ll N

T T T N T T T T T T T T T O OO0 00O O0OC OO0 D
T T T T N T T T T T T T O e O 00000000000 OO0 DO OO OO0
bl R udh pll e Now il p N RS bk ol ok kR okl o ol ol ol v el efwelelewlefefolafoflolfafolo oo e oo oY ooy oY e]
At i el R A At ol b e B ol ol ki ah =X e J o e N Ree o Jeto oo W N oo N v f o N o N W o N o W o N com B o= W oo W o Y oo Weow W o N oo}
b i i adh i el el 2 sl 2l 2l el s sl pll o R R e o Ran Jow Raw J o o J oo oo Row R om Ron oo [l oo F o N o Yoo J o § o K oo o oo Jf o J oou J o0 J oo
O T T T T T T T T e 000000000000 OOOOOOOOOOOCOOOOOO0O
T T N T T T T T T T T O r OO0 00 OO0 OO OO0 COAOOOOOCOOOOLOOOOOO
B s T T T T T T T T T Or e rO00000 L0000 OO0 OO0 OOO0O
N T T T T T P T T et e OO0 0000 OO OO0 O OO0 OO0 OO0 OOO00O
Al 2 S 2l - Bl ol e o R e Jows Noo Y o R R R R oo N oo oo N oo J oo N oow o N ow N oo N N[o F oo N N oo Y on R R Ron N ow I e N o R s J con
T T T T T T e et T OO0 0000000000 OO0 O000OOOOOOOOQQOOOCO
OO r T T O T OO0 000QOO0 0000 OROO0OO0OO0OLOLOO0OO0COCOLOOOO

<C
N

D

1110111111111000000000000000000000000000000000000G

OO T et rOOO0 QOO0 0 QOO OOOO0OOO0OCOOOOOOAOOOOOOOD e

T T T e T T OO OO0 0000000 OO OOOOOOODOOCOOOOOO0OOOOCOOOODO O
TP O 0000 C OO0V OOOOOOOOOOOOO OO OOOOOOOOOOOO0O0O
e erOO000 00000000000 OOOQOOOOOOOOOOOOOOO0OO00OOOOOOOOCOCO
T OO0 000 QOO0 O0OOOQAOCOO0O0OO0COOOQOCOOOOOOOOOOOOQO
T OO OO 0000000000000 0O OOO0COOO0CO0OOOOOOTOOOOOOOOOOO
TEETr OO0 00O0OOODAOOOCOCOOOOOOAOOO0OCOOOOOOTOOOOODOOO
e OO0 00000CO0O000O0OOO OO COCOOOOOOOOOOOOOOOOOO0OOOO0O0OOOOO
OO COO0 OO0 OCOOOOCO OO OO ODOOOOO0OOOOOOO0O0ODOO0OOODOOOOOOOCOO
T OO0 OoOOQOOOOOOOCOOOOCOOUOOOLOOLOOOOOOOODOOOCOOOOOODOOOCO
OO0 O OO OO OOOOOO0CO OO0 COOOOOOOCOOOOO0O0OOCCOOOOOOCOO00O
OO OO OOOCOOOODODODOOOOOOODOOOOOODOOOOOOO O OO OOODOODOOOTOODOOOD

L.

US 6,636,840 Bl

Sheet 17 of 17

Oct. 21, 2003

U.S. Patent

D N e e e e) N A P T T T T T T T e T A e T T T T T T T R T T Y AT e e e T T T e v e O v O v e
T (T T~ T T T T T (D T T e T = e e T Y D T T e O T T T T T T T T T T T T e e e e e O
111111111..11..114!11111..11001110111111101111111111-1!.1..1...00
e (I T T T T T T Y T et et T e e O T T O e T T O T T T T T T e e OO0 0
o Y o T T Y e A = D T T X T T T T () T T e o T T A A e T R T Y A T T T T T T T T e e OO0 00O
014...1...1..01-14.'4.11.4!4...111..1.11111111111111111111011114:.100000
e = e e = e o = (D T Y T Y N T Y Y A Y . R A P TR e T T T e T T e T O T e OO0 OO0
11110114‘1111111104!1111111111111110101111110000000
4!1.1.-11011:4:4!14!4!4...1.1111011111111111110111111000000000

-
4...1.4I‘.I111111101110101111111111011111111100000000000

4.|4|.111111111111101001..4(1414!1..1111011111111}1000000000nU

4.....1-11..11111111«11110111.1.4....1.11111101101111000000000000G
01.4!.1..04.!4!110_1..4....1...1-11101.4!4!11:..I.1..4...11..111111110000000000000—.H
T T T T T T T T X T T T e O Tt O T T T T e 000000000000 OO
O T T e T O T e e e O e 0000000000000 0O
e X~ Y Y= T N Y Y Y A A e A A T A T T T T O T T T e e e T T 0000000000000 000O
™ o Y Y Y P T T T T T N T T T T T O T T e e r OO0 000000000 O
e e O T OO T T T e r000000000C OO0 0O0O
T, O e e OO TrOO0000O0DDOOOOD0OD00C0
O T O T T T T 0000000000000 O0000O
v o T T (I T vt T T e e OO0 OO0 000000
e OO Ot T O T OO0 000000000 OO0 O00O0DE

11..1.4!1.11..I011.1.1.414!1.14|1.4|.1.4|1..1.nU100000000000000000000000
vl

.

(¥} 14 WONH) INNILNOD

US 6,636,840 B1

1

COMPUTER SYSTEM CONFIGURED IN
SUPPORT OF SOLVING NP-COMPLETE
PROBLEMS AT HIGH SPEED

This application is a continuation-in-part of application
Ser. No. 09/006,367 filed Jan. 13, 1998 now abandoned,
entitled COMPUTER SYSTEM CONFIGURED TO PRE-
CISELY SOLVE-NP COMPLETE PROBLEMS AT HIGH
SPEED, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to computer systems, and
specifically to a computer system specially configured in
support of solving NP-complete type problems of the poly-
nomial difficulty.

2. Background of the Prior Art

It is known that a precise solution to an NP-complete type
problem of discrete mathematics, such as the problem of
finding the minimum Hamiltonian cycle in a Hamiltonian
network, can be found by constructing all possible solutions
of the problem and selecting the optimal solution among
them. The problem with this method of constructing and
comparing all possible solutions is that, since the number of
possible solutions depends on the problems dimension N as
NI, existing computers can construct and evaluate the set of
possible solutions within a practical amount of time only in
the case where N is sufficiently small. Significant time
delays of up to several minutes and attendant component
degradation are observed in the case where currently avail-
able computer systems are employed to solve moderate node
sized minimal cycle problems (e.g. N=10-20) using the
approach of constructing all possible solutions. As the
number of nodes increases, computation time requirements
increase exponentially. It is estimated that the fastest avail-
able computer system would require at least one month of
computation time to precisely solve a simple 30 Node
minimal Hamiltonian cycle problem wherein a primary
network contains non-binary edge weights using a construct-
all-solutions approach.

Currently available computer systems which claim to
provide solutions to Hamiltonian cycle problems within a
reasonable time employ methods having method steps based
on approximations of exact solutions. Accordingly, these
systems cannot be relied upon where an exact solution to an
NP-complete type problem is required.

Other attempts have been made to model Hamiltonian
networks using resistive circuits. Studies have shown that a
minimum Hamiltonian cycle can be defined by Kirchoff’s
equations. Nevertheless, as is the case with existing
computer-implemented methods, problems have been noted
in the accuracy attainable with methods based on physical
modeling.

There exists then a need for a computer system configured
to precisely solve NP-complete type problems such as
Hamiltonian cycle problems within a practical time frame.

SUMMARY OF THE INVENTION

According to its major aspects and broadly stated, the
present invention is a computer system comprising a micro-
processor in communication with a memory space that is
configured to precisely solve NP-complete type problems,
including problems which, based on the number of nodes,
have large dimensions. The computer system is configured
to solve the minimal Hamiltonian cycle of a primary net-

10

15

20

25

30

35

40

45

55

60

65

2

work comprised either of edges having non-binary (which
may include positive and negative weights) or of binary (0
or 1) valued weights.

The computer-implemented method includes the steps of
recording in a computer memory space a primary network
represented by the matrix of its edge weights; forming an
equivalent representation of the primary network as a set of
N subnetworks; improving a path of the network by reor-
dering the nodes of the path according to a predetermined set
of reordering rules; transforming the set of subnetworks by
changing weights in the subnetworks according to a prede-
termined set of edge weight changing rules; and repeating
the improving and transforming steps until an exit condition
is satisfied.

In the forming step for separating the primary network
into N subnetworks, each subnetwork is formed by changing
the weights of certain edges of the primary network so that,
in each formed subnetwork, all edges incident to one node
of the subnetwork have zero weight.

In the improvement step, a starting path, or ordering of
nodes is selected, and improved by reordering the nodes of
the network according to a predetermined set of reordering
rules. The ordering of nodes after the first or any subsequent
reordering is referred to as the present minimal path. In one
variation of the improvement step, data from the first sub-
network is used while the path is subjected to a test wherein
the weight of a connecting edge connecting a certain node of
the path is compared to the edge weights of remaining
non-incident edges of the present path. If the weight of the
connecting edge is less than that of any remaining in the
path, than the path is reordered so that the node connected
by the connecting edge is interposed between the pair of
nodes connected by the path edge having greater weight than
the connecting edge. After the path is reordered considering
the edge weights of the first subnetwork, the test is applied
using the reordered cycle and the weights of the cycle of the
second subnetwork. The improvement procedure continues
until a termination condition is satisfied.

When the improvement procedure is complete, the edge
weights of certain edges of each subnetwork are changed
according to a set of edge weight changing rules in a
transformation step according to the invention. In one varia-
tion of the transformation step, each subnetwork is subjected
to a test wherein the weight of a connecting edge of an initial
node of an improved path (as determined in the preceding
improvement step) is compared to the edge weights of
non-incident edges of the path. If the connecting edge has a
weight greater or equal to the maximum edge weight of the
remaining non-incident edges in the path, then edge weights
of certain edges in the set of subnetworks are changed by an
amount determined by the difference between the edge
weights of certain connecting edges of the path. The edge
weight changing procedure is carried out for each subnet-
work of the set of subnetworks until a termination condition
is satisfied.

The improvement step and the transformation step are
repeated until an exit condition is satisfied. An exit condition
is satisfied either if the present minimal path is not reordered
on application of the set of reordering rules, or the edge
weight of the edges of the set of subnetworks are not
changed on application of the edge weight changing rules.
When an exit condition is satisfied, the ordering of the
present minimal path during the most recent application of
the improvement step is stored in the computer system’s
memory space as the minimal passage along the Hamilto-
nian cycle, and the sum of edge weights associated with the

US 6,636,840 B1

3

path is stored in the memory space as the value of the
minimal Hamiltonian cycle.

A major advantage of the invention is that the computer
implemented method dramatically reduces the computa-
tional time necessary to solve minimal Hamiltonian cycle
problems, as compared to the only known alternative precise
solution method involving constructing and comparing all
possible solutions. As a result, the method frees up computer
systems configured to solve minimal Hamiltonian cycle
problems to perform other tasks, or to solve additional
minimal Hamiltonian cycle problems within a given time
frame. The dramatic reduction in the number of data trans-
fers required to solve minimal cycle problems also signifi-
cantly reduces computer component degradation resulting
from the required data transfers.

These and other features and advantages of the present
invention will become apparent to skilled artisans from the
detailed description of the preferred embodiment hereinbe-
low.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system in which
the present invention may be implemented;

FIG. 2 is a flow diagram illustrating a minimal Hamilto-
nian path finding method according to the invention;

FIG. 3 is a graphical representation of a primary network
which is recorded into a memory space in a recording step
according to the invention;

FIG. 4 is a graphical representation of a partially formed
subnetwork formed in a forming step according to the
invention;

FIG. 5 is a tabular representation of a set of N subnet-
works formed in a forming step according to the invention
shown together with a graphical representation of a primary
network;

FIGS. 6A-6H show graphical representations of a series
of minimal present paths developed during application of an
improvement step according to the invention;

FIGS. 7A-7B show graphical representations of a pro-
gression of minimal present paths developed during appli-
cation of an improvement step according to the invention;

FIG. 8A is a tabular representation of a present set of
subnetworks formed on completion of the first stage of the
transformation step;

FIG. 8B shows a graphical representation of data corre-
sponding to the present minimal path and the initial set of
subnetworks considered the first stage of the transformation
step;

FIG. 8C shows a present primary network formed during
the first stage of the transformation step;

FIG. 9 is a tabular representation of a present set of
subnetworks developed during application of the transfor-
mation step according to the invention;

FIG. 10 is a tabular representation of a primary network
corresponding to a 30 node machine tool movement prob-
lem;

FIG. 11 is a tabular representation of a primary network
corresponding to a 51 node Traveling Salesman Problem;
and

FIG. 12 is a tabular representation of a primary network
corresponding to a 50 node Hamiltonian cycle in graph
problem.

DETAILED DESCRIPTION OF THE
INVENTION

Shown in FIG. 1 is a block diagram of a computer system
in which the present invention may be implemented. Com-

10

15

20

25

30

35

45

50

55

60

65

4

puter system 10 includes a processor 12 in communication
with a memory space 14 which typically includes memory
elements of two main types including a read-only memory
device for storing a program for operating processor 12 and
a read-write memory device primarily for storing data
operated on by processor 12.

As is well known to skilled artisans, a program compris-
ing instructions recognizable by processor 12 enabling com-
puter system 10 to operate in accordance with a certain
protocol may be stored on a transportable memory device
such as a floppy disk or compact disk. Processor 12 may read
the program instructions directly from the transportable
memory device in which case the transportable device forms
part of memory space 14 of system 10, or else processor 12
can read an entire set of program instructions from the
transportable storage device, write the entire set of instruc-
tions into a non-transportable memory device storage loca-
tion of memory space 14, and execute the instructions by
reading them from the non-transportable memory device
storage location without further reading of the instructions
from the transportable memory device.

The present invention is a computer system configured to
solve NP-complete problems of the polynomial difficulty
within a time frame polynomially dependant on the prob-
lem’s dimension. Described herein are particular solutions
for the NP-complete problems of determining the minimal
Hamiltonian cycle in a non-binary network comprised of
edges which may have positive and negative weights, and
the problem of determining the Hamiltonian cycle in graph.
The Hamiltonian cycle in graph problem refers to the
particular case where a network comprises binary edge
weights equal to 1 or 0. Numerous engineering problems can
be modeled as minimal Hamiltonian cycle problems.

Commonly encountered engineering problems which can
be modeled as minimal Hamiltonian cycle problems include
problems such as the Traveling Salesman Problem which
serves as the model for such particular problems as the
delivery of post and goods, and routing for public transpor-
tation and emergency vehicles; the problem of object move-
ment along a path, including the problem of machine tool
movement; various communications network problems; data
delivery via computer network problems; and various pro-
duction planning problems.

Cook’s theorem states that if one NP-complete type
problem of the polynomial difficulty is solved, then solutions
exist to all problems belonging to this class. (Cook, S. A.
“The Complexity of Theorem-proving Procedures,” Proc.
3rd Ann. ACM Symp. On Theory of Computing Machinery,
New York, 151-158 (1.5; 2.6; 3.11; 5.2; Al.4; A9.1) (1971)).
Accordingly, skilled artisans will recognize that the inven-
tions described herein can be adapted to solve NP type
problems of the polynomial difficulty which can be mod-
elled as Traveling Salesman and Hamiltonian cycles in
graph problems.

Problems of the type which the present invention may be
adapted to solve are discussed in (Computers and
Intractability, by Michael R. Garey and David S. Johnson,
Bell Laboratories, Murray Hill, NJ., W.H. Freeman & Co.,
San Francisco, 1979.

A flow diagram illustrating the major steps of one
embodiment of the invention is shown in FIG. 2. A method
according to the invention includes the steps of, at step 20,
recording in a computer memory space a primary network
represented by the matrix of its edges; at step 22 forming an
equivalent representation of the primary network as a set of
N subnetworks; at step 24 improving a cycle of the network

US 6,636,840 B1

5

by reordering the nodes of the cycle according to a set of
reordering rules; at step 26 transforming the set of subnet-
works by reducing weights in the subnetworks according to
a set of changing rules; and repeating the improving and
transforming steps until an exit condition is satisfied.

The formation of a set of equivalent subnetworks from a
primary network is a major feature of the invention. This
method step developed by the inventors reveals properties of
the primary network which cannot be determined without
equivalent network formation, and provides a framework for
isolating a minimal Hamiltonian path in the primary net-
work.

The individual steps of the method described above are
described with reference to FIGS. 3 through 9 showing
graphical and tabular representations of various networks
and subnetworks constructed and operated on at various
stages in the method’s operation.

A graphical representation of a primary network, which is
recorded into memory 14 in a first step of a method
according to the invention is shown in FIG. 3. If the
NP-complete problem being solved is a Traveling Salesman
type problem then Nodes 1-6 of the network shown corre-
spond to various cities while edges e.g. Edge C,.=71
correspond to distances between the various cities. If the
problem involves control of an object in space then Nodes
1-6 may correspond to positions required to be realized by
the object while the edges of the network may represent
distances or times required to move between those various
positions.

An example of a six node primary network which is
recorded into memory space 14 in the first step of the
method is shown in FIG. 3. While the present invention can
be applied to solving problems involving very large
dimensions, a simple six node problem is selected to illus-
trate the major features of the invention. The primary
network is represented by a matrix of its edges weights. The
nodes of the network are numbered Nodes 1-6, while the
weights of the edges are listed adjacent to the line segments
shown connecting the various nodes, e.g. C,5=27. In the
actual recording of the primary network into memory space
14 of computer system 10, cach edge weight may be
recorded into a particular memory space location that is
designated according to the pair of nodes that a particular
edge connects.

In the description of the invention which follows the
definition of certain terms should be well understood. The
term “incident” is used herein to refer to an edge that extends
from a certain node. For example, the edges C,,, C;3, Cys,
and C,, are the edges in the primary network incident to
Node 1. A “connecting edge” of a particular node herein
refers to an edge that connects nodes incident to edges
incident to the particular node. For example, the edge
between nodes 2 and 6, C,, is the connecting edge of node
1. An “initial node” of a path refers to the node correspond-
ing to the number of the subnetwork whose data is being
applied in a method step described herein. That is, if data
from a first subnetwork is being applied, the initial node is
node 1. If data from a second subnetwork is applied, the
initial node is node 2, and so on. A Hamiltonian cycle of the
primary network refers to the sum of a sequence of edge
weights along a path which contains all nodes of the
network. A Hamiltonian cycle may also be referred to as a
Hamiltonian value. A Hamiltonian “path” of a network,
meanwhile, refers to an ordering of nodes in a network.
Thus, in the primary network shown in FIG. 3, the path
H(1-2-3-4-5-6-1) has a Hamiltonian cycle of 46+29+65+
17427+71=255.

10

15

20

25

30

35

40

45

50

55

60

65

6

The number of Hamiltonian cycles in a network is large
and is equal to (N-1)!. Thus, it can be seen that a method for
finding the minimum Hamiltonian cycle by calculating the
length of each candidate cycle and sorting out among them
the cycle having the shortest length would be impractical for
even the fastest available computer systems of the type
having the general configuration shown in FIG. 1. The
method described herein involves mathematical simplifica-
tions which make it possible to find a precise minimal
Hamiltonian cycle in a recorded primary network without
calculating the length of each candidate cycle. The method
is specifically designed for application in a computer system
of the type described in FIG. 1 in that the method provides
for a precise solution to the problem of finding a minimal
Hamiltonian cycle when implemented in a computer system
of the type described with reference to FIG. 1, but has no
practical utility outside of such implementation.

The second step in the method of the invention, involving
forming an equivalent representation of the primary network
by separation of the primary network into a set of N
subnetworks, is described with reference to FIGS. 3 and 4.
In the forming step, the primary network is separated into a
set of N subnetworks, by subjecting a primary network to a
predetermined set equivalent network forming rules.
Specifically, each subnetwork is formed by changing each
edge weight of the primary network according to a method
wherein the edge weights of each edge incident to one node
of the resulting subnetwork are changed so that they have
zero weight. The formation of a set of equivalent subnet-
works from a primary network is a major feature of the
invention. This method step developed by the inventors
reveals properties of the primary network which cannot be
determined without equivalent network formation, and pro-
vides a framework for isolating a minimal Hamiltonian path
in the primary network.

The formation of the first subnetwork is illustrated with
reference to FIGS. 4 and 5. In the formation of the first
subnetwork, the weights of all edges of the primary network
incident to Node 2 are reduced by a unit according to the
edge weight of the edge between the first and second nodes
of the primary network, that is 46 units in the primary
network shown. FIG. 4 shows a partially formed first
subnetwork shown in its state after application of the first
part of the forming step for forming a first subnetwork.
When the partially formed subnetwork of FIG. 4 is formed,
the edge weights of each edge incident to Node 3 of the
partially formed subnetwork are reduced by a unit deter-
mined by the edge weight of the edge between Nodes 1 and
3 of the primary network, that is 57 units. After each edge
weight incident to Node 3 is reduced by the edge weight
between Nodes 1 and 3 of the primary network, each edge
weight incident to Node 4 of the resulting partially formed
first subnetwork is reduced by the weight of the edge
between Nodes 1 and 4 of the primary network of FIG. 3,
and so on until the first subnetwork is formed.

The second subnetwork of the set of subnetworks is
formed according to the same rules governing formation of
the first subnetwork except that the unit values by which the
weights of the network are reduced are determined accord-
ing to edge weights of the primary network that are incident
to Node 2 instead of being determined by the edge weights
of edges incident to Node 1 as in the formation of the first
subnetwork. In the formation of the second subnetwork the
edge weights incident to Node 1 is to be reduced in 46 units,
to Node 3 in 29 units, to Node 4 in 14 units, to Node 5 in
38 units, and to Node 6 in 27 units. For each subsequent
subnetwork, the edge weights of edges incident to the node

US 6,636,840 B1

7

corresponding to the subnetwork being formed may be used
to control the reducing of edge weights of the subnetwork.

A table representing the complete set of N subnetworks
for the primary network having N=6 nodes is shown in FIG.
5 together with primary network. The determination of
certain subnetwork edge weights determined according to
the forming step described herein from values of the edge
weights of primary network is illustrated graphically in FIG.
5. For example, the edge weight of edge Cs4 in the first
subnetwork is formed by taking the edge weight 27 of edge
Cs 1n the primary network subtracting 71, the edge weight
of the edge between Nodes 1 and 6 of the primary network,
and 22, the edge weight between Nodes 1 and 5 of the
primary network.

An example of the improvement step of the invention is
illustrated graphically with reference to FIGS. 6A-6H. In
the improvement step, a starting path, or ordering of nodes
is selected, and improved by reordering the nodes of the
network according to a predetermined set of reordering
rules. Typically, the path H[1-2-3 . . . (N-1)-N] is selected
as the starting path. Each subnetwork 1-6 in the set of
subnetworks shown in FIG. § is subjected to a test wherein
the weight of a connecting edge connecting a certain node of
the subnetwork is compared to the edge weights of the
present path (which is the starting path when the first
subnetwork is first subjected to the test). If the weight of the
connecting edge is less than that of any non-incident edge in
the present path, then the path is reordered so that the node
connected by the connecting edge is interposed between the
nodes connected by the path edge having a greater weight
than the connecting edge.

FIG. 6A shows a graphical representation of the starting
path H(1-2-3-4-5-6-1) corresponding to the first subnetwork
shown in FIG. 5. Applying the reordering rules to the first
subnetwork, the weight, —90, of “connecting” edge C,
connecting Node 1 as shown is compared to the edge
weights of the remaining edges in the path (e. g. =54, =50,
-85, -56) not incident to the node connected by the con-
necting edge. If the weight of the connecting edge is less
than the weight of any of the edges remaining in the path not
incident to the node connected by the connecting edge, then,
the length of the path can be reduced by placing Node 1
between the nodes connected by the edge having a greater
weight than the connecting edge. If several remaining edges
have greater weight than the connecting edge then the node
connected by the connecting edge should be placed between
the nodes connected by the edge having the greatest weight.
Thus, in the example shown in FIG. 6A, the starting path is
reordered by placing Node 1 between Nodes 3 and 4 as
shown.

Referring to FIG. 6B, the edge weight of the edge
connecting Node 2 using data from the second subnetwork
shown in FIG. § is then compared to the remaining edge
weights of edges in the path, and Node 2 is placed between
nodes whose connecting edge is greatest among those
greater than the connecting edge, and so on. The data used
to determine whether a path should be reordered is taken
from the subnetwork corresponding to the connecting node.
That is, when the path is applied to the reordering test using
data from the first subnetwork, the connecting edge is the
edge connecting Node 1. When the path is applied to the
reordering test using data from the second subnetwork, the
connecting edge is the edge that connects Node 2, and so on.
It is seen with reference to FIGS. 6C, 6D and 6E illustrating
the testing of the condition of whether the connecting edge
weight is less than any of the remaining edge corresponding
to data from the third, fourth, and fifth subnetworks respec-

10

15

20

25

30

35

40

45

50

55

60

65

8

tively that if the connecting edge has a weight that is greater
than any remaining edge of the path, then there is no
reordering of nodes of the path. The described reordering
rules for reordering the present path are applied using data
from each subnetwork successively, considering the con-
necting edge to be the edge connecting the node correspond-
ing to the present subnetwork, until the path is not reordered
on N successive applications of the test using data from each
subnetwork of the set of subnetworks.

An alternative improvement step for improving the
present path is shown with reference to FIGS. 7A and 7B.
FIG. 7A is a graphical representation of the starting path
H[1-2-3-4-5-6] using data from the first subnetwork of the
set of subnetworks shown in FIG. 8. In the alternative test
for reordering a present path, it is considered whether the
sum of the weights of two internal cross edges connecting
nodes of the path, one of which is incident to the node of the
current subnetwork, is less than the sum of the weights of the
edges separating the cross nodes. If the sum of the cross
edges is less than the sum of the edges separated by the cross
nodes, then the path is reordered so that the cross edges are
considered part of the newly formed current path. In the
example using the first subnetwork data shown in FIG. 7A,
edge C,; incident to the node of the current subnetwork and
edge C,, crossing edge C, 5 are appropriate cross edges. The
edges “separated by the cross nodes” are the edges C,, and
C,,. Because the summary weight of the cross edges (-110)
is less than the summary weight of the edges (-50) separated
by the cross nodes, then the path segment 1-3-2-4 is sub-
stituted for the path segment 1-2-3-4 in the formation of a
new minimum current path.

When the path is reordered (or cannot be reordered) using
data from the first subnetwork, the test is applied using data
from the second subnetwork, as shown in FIG. 7B. Applying
an alternative path improvement step using data from the
second subnetwork, edge C,¢ incident to the node of the
present subnetwork, and edge Cs; are the cross edges while
edges Cs¢ and edges C, are the edges separated by the cross
nodes. Because the sum of the edge weights of the edges C,
and Cs; is less than the sum of Cs4 and C,5 then the path
segment 3-5-4-2-6 is substituted for the path segment 3-2-
4-5-6 in the formation of a next minimum path. Candidate
pairs of cross edges can be considered in succession during
application of the test. For example, referring to FIG. 7A,
whether or not application of the path reordering test using
cross edges C, 5 and C,, resulted in a reordering of the path,
then the candidate pair of cross edges C,, and C,5 could be
applied to the test before the test is applied using data from
the second subnetwork.

The improvement step is complete when application of
test using data from the complete rotation of data from each
of the N subnetworks does not result in any reordering of the
present minimal path.

Skilled artisan will appreciate that the improvement step
described herein can be carried out by applying the present
path to a reordering test using combinations of the first and
the alternative (the cross-edge) set of reordering rules
described herein. For example, in a first iteration, data from
the first subnetwork can be used to reorder the present
minimal path by subjecting the path to the reordering test
considering the weight of connecting edges while in a
second iteration data from the second subnetwork can be
used in a reordering test wherein the summary weights of a
pair of cross edges is considered.

A transformation step according to the invention for
reducing edge weights of a present primary network is

US 6,636,840 B1

9

described with reference to FIG. 5 showing a complete
initial set of subnetworks formed in a formation step accord-
ing to the invention, FIG. 8A showing a present set of
subnetworks formed on completion of the first stage of the
transformation step, FIG. 8B showing a graphical represen-
tation of data pertaining to the present minimal path, and the
initial set of subnetworks considered in the first stage of the
transformation step, and FIG. 8C showing a present primary
network formed during the first stage of the transformation
step, and FIG. 9 showing a present set of subnetworks on
completion of a last stage of a transformation step.

The present set of subnetworks shown in FIG. 9 is formed
in stages. In each stage of the transformation step, processor
12 considers a matrix using data corresponding to the
present minimal path (as determined during the last execu-
tion of the improvement step) and to one sequentially
selected subnetwork in the present set of subnetworks. The
processor then analyzes this data first to determine whether
a precondition is satisfied, and if the precondition is
satisfied, the processor determines from the matrix a reduc-
tion factor controlling the amount of weight reduction by
which certain edges in the present set of subnetworks are to
be changed.

In the first stage of the transformation step, processor
considers a matrix corresponding to the present minimal
path using data from the first subnetwork of the present set
of subnetworks. Because the present set of subnetworks is
the initial set of subnetworks during the first stage, the data
considered in the first stage of the transformation step is the
network shown in FIG. 8B, which is a network correspond-
ing to the present minimal path and the first subnetwork
from the initial set of subnetworks shown in FIG. 5.

During execution of each stage, processor 12 executes a
test to determine whether the stage will result in weights of
any edges of the present set of subnetworks being changed.
The precondition as it is applied during the first stage is
described with reference to FIG. 8B. In determining whether
edge weights in the present set of subnetworks are to be
changed during the stage, processor 12 compares the weight
of the connecting edge of the initial node (corresponding to
the number of the present subnetwork) to the weights of
edges of the path, excluding those zero-weight edges inci-
dent to the initial node. If the edge weight of the connecting
edge is greater than the maximal non-incident path edge,
then certain edge weights of the present set of subnetworks
are changed according to a set of edge weight changing
rules, which are described hereinbelow. If, however, the
connecting edge is less than or equal to the maximal
non-incident edge weight, then the stage ends, and proceeds
to a next stage of the transformation step.

In the example described the edge weight of the connect-
ing edge Cs3;=-59 is greater than the maximal non-incident
path edge weight C;,=-66. Because the precondition is
satisfied, processor 12 proceeds to determine a weight
change factor, A, for controlling the amount by which
weights of certain edges in the present set of subnetworks
are to be changed. In the first stage, a method for determin-
ing a weight change factor A, for a given stage of the
transformation step, where s indicates the stage is described
again with reference to the network of FIG. 8B. In deter-
mining a weight change factor A,, for the first stage,
processor 12 compares the weight of the maximal edge
weight of edges in the network of FIG. 8B to the weight of
the second greatest edge weight, excluding from consider-
ation the zero-weight incident edges C,5 C,5, C,,, C;, and
C, ¢ The weight change factor, A, is the difference between
the maximal non-incident edge weight and the second

10

15

20

25

30

35

40

45

50

55

60

65

10

greatest edge weight. After determining a weight change
from A,, processor 12 reduces the maximal edge weight of
the matrix by A, so that it is equal to the weight of the second
greatest edge weight. In the example described with refer-
ence to FIG. 8B, the maximal non-incident edge weight is
C5,=-30 while the second greatest non-incident edge weight
is C,3==50. Processor 12 therefore reduces the maximal
edge weight Cs, by A;=20, so that the weight of edge Cs,
becomes Cs,=-50.

In the case that there are more than one equal maximal
edge weights, then the edge weight greatest in magnitude
after the more than one equal maximal edge weight is
considered to be the second greatest edge weight for use in
determining the value A for a given stage, and each of the
more than one maximal edge weights is reduced by A,. If
edge Cy, in the matrix shown were C, ,=-30, for example,
edge C;,=-50 would still be considered to be the second
greatest edge weight for the purposes of determining the
weight change factor A,, and the weight of both of the edges
Cs, and Cg, would each be reduced by A,=20.

According to the invention, a change of the weight of any
of the edges of the set of subnetworks is equivalent to
changing the corresponding edge of the present primary
network, which is represented by the initial primary network
of FIG. 3 before execution of the first stage of the transfor-
mation step. Thus, a reduction of edge weight Cs, in the first
subnetwork shown in FIG. 8B can be expressed as a
reduction in the weight of the same edge Cs, in the primary
network of FIG. 3. In the example shown, the reduction of
the edge weight of edge Cs, by A, in the matrix of FIG. 8B
to C5,=-50 is equivalent to reducing the edge weight of edge
Cs, in the primary network of FIG. 3 by A; to C5,=18. A
present primary network formed during the first stage of the
transformation step having edge weight Cs, reduced to
C5,=18 is shown in FIG. 8C.

When processor 12 reduces an edge weight or weights of
a previous primary network to form a present primary
network, then weights of certain edges in the set of equiva-
lent subnetworks must be changed so that the weights of all
edges in the present set of subnetworks correspond to the
edges of the present primary network. Processor 12 changes
edge weights of edges in the remaining subnetworks in the
set of subnetworks of FIG. 8A by applying the formation
rules for forming a set of subnetwork from a primary
network, as described herein previously. Subnetworks 2—6
shown in FIG. 8A are formed from the present primary
network of FIG. 8C by applying the formation rules applied
to form the set of subnetworks of FIG. 5 from the primary
network of FIG. 3. Specifically, in forming the remaining
subnetworks of FIG. 8A from the present primary network
of FIG. 8C, processor 12 reduces all edges incident to a
certain node of the present primary network by a value
determined by the edge weight between the corresponding
certain node in the primary network and the node in the
primary network corresponding to the number of the sub-
network currently being formed. For example, in forming
the xth subnetwork in the set of subnetworks of FIG. 8A,
each edge weight incident to node y of the corresponding
primary network is reduced by the edge weight between
nodes x and y in the primary network. The end result of
applying the equivalent subnetwork forming rules to the
present primary network of FIG. 8C is the set of equivalent
subnetworks of FIG. 8A. When the equivalent network of
FIG. 8B is formed, the first stage of the transformation step
is complete and processor 12 proceeds to the second stage of
the transformation step.

The method of forming a present set of subnetworks, as
shown in FIG. 8A, from a present primary network, as

US 6,636,840 B1

11

shown in FIG. 8C, can be simplified by changing only those
edge weight values in the set of subnetworks requiring
change without formally applying the subnetwork formation
rules for each edge weight value of the set of subnetworks.
Skilled artisans will recognize that various relationships
correlating a change in a given edge weight value in a
present primary network with changes required in edge
weight values in the present set of subnetworks can be
derived prior to execution of the program and then applied
during program operation. For example, reducing an edge
weight value, Cqr in a present primary network by A, for a
given stage s will result in an increase in subnetwork Q edge
weights incident to node r by A, units, an increase in
subnetwork R edge weights incident to node q by A, units,
and a reducing of all edge weight values Cqr by A, units in
subnetworks excluding the subnetworks Q and R. Edge
weight values changed during Stage 1 of the transformation
step in the example considered are underlined in FIG. 8A.

The second, and thereafter the sth, stage of the formation
step are executed in the manner of the first stage of the
transformation step, except that data used in determining
whether the precondition for edge weight reduction, and if
applicable, the weight change factor, A, for the stage is the
data from the present set of subnetworks, which will be
different from the initial set of subnetworks in the case that
any previous stages resulted in an edge weight reduction of
edges in the present set of subnetworks. Thus, for the second
stage of the transformation step, data from the subnetwork
of the second column of subnetwork shown in FIG. 8A is
considered. For application of the precondition test during
the second stage, the precondition is tested for of whether
the initial connecting edge C, corresponding to node N=2
is greater or equal to the weight of any non-incident edge
Css Csp, Cis, Csy. If the precondition is affirmed, the
non-incident edge weight having the second greatest value is
subtracted from the non-incident edge weight having the
greatest value to determine the weight change factor A,,
which is used to determine the amount by which weights of
certain edges in the set of subnetworks are to be changed,
described previously in connection with the description of
the first stage of the transformation step.

Processor 12 continues execution of the transformation
step for an undetermined number stages utilizing data from
successive present subnetworks (subnetwork 1 data is uti-
lized in the stage subsequent to the stage in which subnet-
work N data is used) until for N successive stages (a
complete cycle of subnetworks) processor 12 does not
reduce any edge weight of any edge in the present set of
subnetworks. That is, the transformation step terminates
when the present set of subnetworks does not change for N
successive stages. A present set of subnetworks at the
termination of the transformation step for the example given
is shown in FIG. 9.

When the transformation step is complete, processor 12,
as is indicated by the flow diagram of FIG. 2 normally
proceeds to a next execution of the improvement step 24 for
reordering nodes of the present minimal path. Then proces-
sor 12 carries out the next execution of an improvement step
applying the same node reordering rules it applied during the
first execution of the improvement step except that instead
of utilizing data from the initial set of subnetworks shown in
FIG. §, processor 12 utilizes data from the present set of
subnetworks as the present set of subnetworks exist at the
time of termination of the last execution of the transforma-
tion step.

Generally, processor 12 will alternate between executing
the improvement step 24 and the transformation step 26 until

10

15

20

25

30

35

40

45

50

55

60

65

12

an exit condition is satisfied. An exit condition may be
satisfied either after execution of the improvement step or
the transformation step as is indicated by decision blocks 30
and 32 of the flow diagram of FIG. 2. The minimal path
finding method of the invention is exited at block 30 after
execution of an improvement step if, during the improve-
ment step, no node reordering is realizing during application
of the node reordering rules utilizing data from the each of
the first N subnetworks. That is, processor 12 exits the
minimal path finding method after execution of the improve-
ment step if the improvement step is terminated without
there being realized any node reordering during the step.
Processor 12 exits the minimal path finding method after
executing transformation step 26 at block 32 if execution of
the transformation step does not result in any weights of any
edges in the present set of subnetworks being changed
during the first N stages of the transformation step. That is,
processor 12 terminates the minimal path finding method
after executing the transformation step 26 if no edge weight
change is realized during the step.

It will be seen then, that the minimal path finding method
could feasibly be exited either after a first execution of an
improvement step 30, without executing a transformation
step 26 or after a first execution of the transformation step
26 if the appropriate exit conditions are satisfied, although
instances of this situation occurring will be rare especially
for large node problems. Skilled artisans will recognize
further that the particular ordering of the improvement step
and the transformation step described herein is not essential
to practice of the invention, although it is generally
preferred, for computation time purposes, to execute the
improvement step prior to executing the transformation step.
That is, it should be well understood that an embodiment of
the invention wherein a transformation step is carried out
prior to an improvement step is the equivalent of an embodi-
ment where the ordering of these steps is reversed.

When the minimal path finding method is exited at block
30 or at block 32 processor 12 at step 34 stores into memory
space 14 the present minimal path resulting from the last
execution of the improvement step 24 as the minimal
Hamiltonian path and may store the sum of the edge weights
of edges connecting the nodes of the minimal path into
memory space 14 as the minimal Hamiltonian cycle.

The following examples illustrate the dramatic reduction
in computation time, and decreased component degradation
realized with the present invention as compared with the
alternative method for finding a precise solution to minimal
Hamiltonian cycle type problems involving construction of
all possible solutions.

Example 1

To solve the problem of finding the minimum Hamilto-
nian cycle, the computer system is designed as shown in
FIG. 1. The Intel® Pentium Pro® processor, 200 MHZ, 512
KB cache, is used.

The machine tool has been exploited to machine 30
details and the times, necessary to adjust its equipment
during the passage from machining one of the 30 details to
machining any other detail of the given set, have been
mastered. The times (in minutes) are given in the table of
FIG. 10.

It is required to find the optimum regime of the machine
tool exploitation (the optimum order of feeding details to be
machined).

US 6,636,840 B1

13
Found:
The optimum order of feeding details to be machined:
1-5-2-10-6-7-11-28-27-14-15-29-17-4-20-18-9-3-12-23-
8-30-13-25-21-22-24-19-26-16-1;
The total equipment adjustment time, when machining 30
details: 90 min;

Computer running time: 4.4 sec.

Example 2

To solve the Traveling Salesman Problem, the computer
is designed as shown in FIG. 1. The Intel® Pentium Pro®
processor, 200 MHZ, 512 KB cache, is used.

The network consists of 50 USA capital cities and
Washington, D. C. (the between-cities distances have been
determined with the aid of US Atlas, v. 4.0©, developed by
The Software Tool Works, Inc. and Electro Map, Inc.). The
distances are given in the table of FIG. 11. It should be noted
that the rule of triangle for the found between-cites distances
is not fulfilled in 245 cases.

It is required for the network given to find the minimum
Hamiltonian cycle (solve the Traveling Salesman Problem).

The salesman’s optimum route is:

Albany-Harrisburg-Charleston-Columbus-Frankfort-
Indianapolis-Lansing-Madison -Springfield-Jefferson
City-Topeka-Lincoln-Des Moines-St. Paul-Bismarck-
Pierre -Cheyenne-Denver-Salt Lake City-Helena-
Boise-Salem-Olympia-Juneau-Honolulu -Sacramento-
Carson City-Phoenix-Sante Fe-Oklahoma-Austin-
Baton Rouge-Jackson -Little Rock-Nashville-Atlanta-
Montgomery-Tallahassee-Columbia-Raleigh-
Richmond -Washington, D.C.-Annapolis-Dover-
Trenton-Hartford-Providence-Boston-Concord
-Augusta-Montpelier-Albany.

The length of the optimum route: 16,244 miles.

The computer running time: 47.4 sec.

Example 3

To solve the problem of the existence of a Hamiltonian
cycle in graph, the computer is designed as shown in FIG.
1. The Intel® Pentium Pros processor, 200 MHZ, 512 KB
cache, is used.

The graph of 50 nodes is given by a weights matrix. The
edges belonging to the graph are of zero weight; those,
complemented to be strongly connected, have the weight
equal to 1. The graph is given with the help of the generator
of random numbers (with the fixed maximum values of its
nodes’ degree equal to 4). The weights of the graph are given
in the table of FIG. 12.

It is required for the graph given to:

find if a Hamiltonian cycle exists in it (if yes, what is);

find if other Hamiltonian cycles exist.

Found:

The cycle in the graph:

1-21-48-26-41-44-36-43-17-38-30-22-34-42-6-45-46-19-

40-18 -32-31-29-20-16-39-12-15-2-50-8-9-24-5-7-3-
49-25-27-47-33 -35-14-4-13-23-28-11-10-37-1;

In the graph there exist other Hamiltonian cycles;

the computer running time: less than 0.075 sec.

Example 4

The computer system of FIG. 1 is configured to solve a
Hamiltonian cycle in graph type problem. Processor 12 is
provided by a Intel® Pentium Pro® processor having 200
MHZ, 512 KB cache and 64 MB RAM.

10

15

20

25

30

35

40

45

50

55

60

14

Using the random digits generator there were realized
graphs; for each of five values of the total number of graph
nodes N+25, 50, 100, 200 and 400 there were realized 50
random graphs. Then for each of these graphs, there was
solved the problem of existence of the Hamiltonian cycle in
the graph, using the method according to the invention. In
the following table for each of five values N there is given
the maximal (across the ensemble of 50 realizations) dura-
tion of computer time t, spent for the corresponding problem
solution:

N 25 50 100 200 400

t, sec 0.546 5.77 56.8 422 3445

All of the maximal time values were realized in the cases
where the graph lacked the Hamiltonian cycle. If the Hamil-
tonian cycle was available, the time spent for computations
was much shorter.

Example 5

To solve the Traveling Salesman problem the computer is
designed as shown in FIG. 1. The Intel® Pentium Pro®
processor, 200 MHZ, 512 KB cache and 64 MB RAM is
used.

Using the random digits generator there were realized the
networks; for the values of the total number of network
nodes N+25, 50, 100 and 150. The maximal deviation of
weights of the edges in these networks § was +-5, +-100 or
+-500. For each value of £ and for each of N=25 and 50
there were realized 50 networks; for each value of € and for
each of N=100 and 150 there were realized 10 networks.

Then for each of these networks there was solved the
Traveling Salesman problem, using the method according to
the invention. In the following table for each of values of N
and for § there is given the average (across the ensemble of
50 (10) realizations) duration of computing time t, spent for
the corresponding problem solution:

N 25 50
g 5 100 500 5 100 500
t, sec 1.866 2.286 2.405 29.03 38.27 40.93
100 150
5 100 500 5 100 500
649.5 836.4 1038 1781 3528 4072

While the present invention has been particularly shown
and described with reference to the preferred mode as
illustrated in the drawing, it will be understood by one
skilled in the art that various changes in detail may be
effected therein without departing from the spirit and scope
of the invention as defined by the claims.

What is claimed is:

1. A computer-implemented method in support of solving
an NP-complete-type problem, said method comprising the
steps of:

recording in a memory of said computer a primary

network having N nodes represented by a matrix of
edge weights;

forming an equivalent representation of said primary

network as a set of N subnetworks, wherein each of

US 6,636,840 B1

15

said N subnetworks has a like number of nodes and all
edges incident to one node of each of said N subnet-
works have zero weight;
improving a present path by application of reordering rule
means for reordering nodes of said subnetworks suc-
cessively utilizing data from each of said N subnet-
works until for a complete cycle of application of data
from each of said N subnetworks to said reordering rule
means, no subnetwork is reordered;
transforming by application of edge weight changing rule
means for changing weights of edges of said subnet-
works successively utilizing data from each of said N
subnetworks until for a complete cycle of application of
data from each of said N subnetworks to said edge
weight changing rule means, no edge weight is
changed; and
repeating said improving and transforming steps until said
path cannot be reordered by application of said reor-
dering rule means, and said edge weights cannot be
changed by application of said edge weight changing
rule means.
2. The method of claim 1, wherein said reordering rule
means includes means for comparing a weight of a connect-
ing edge connecting a certain node of said path to an edge
weight of non-incident edges of said path.
3. The method of claim 1, wherein said reordering rule
means includes:
comparing means for comparing a weight of a connecting
edge connecting a connected node of said path to edge
weights of non-incident edges of said path; and

means responsive to said comparing means for interpos-
ing said connected node between nodes of said path
incident to an edge having greater weight than a weight
of said connecting edge.

4. The method of claim 1, wherein said edge weight
changing rule means includes testing means for testing
whether a connecting edge of said path has greater or equal
weight than weights of remaining non-incident edges of said
path.

5. The method of claim 1, wherein said edge weight
changing rule means includes:

testing means for testing whether a connecting edge of

said path has greater or equal weight than weights of

remaining non-incident edges of said path; and
means responsive to said testing means for reducing

weights of certain edges of said set of subnetworks.

6. The method of claim 1, wherein said method further
includes the step of storing said present path as a minimal
Hamiltonian path when said path cannot be changed by
application of said reordering rule means, and said edge
weights cannot be reduced by application of said edge
weight changing rule means.

7. The method of claim 1, wherein said method further
includes the step of storing a cycle associated with said
present path as a minimal Hamiltonian cycle when said path
cannot be reordered by application of said reordering rule
means, and said edge weights cannot be changed by appli-
cation of said edge weight changing rule means.

8. The method of claim 1, wherein a first execution of said
improving step occurs prior to a first execution of said
transforming step.

9. The method of claim 1, wherein a first execution of said
transforming step occurs prior to a first execution of said
improving step.

10. The method of claim 1, wherein said forming step
includes application of equivalent subnetwork formation
rule means utilizing said edge weights of said primary
network.

10

20

25

30

35

40

45

50

55

60

65

16

11. The method of claim 1, wherein said edge weights of
said primary network have binary values.

12. The method of claim 1, wherein said edge weights of
said primary network have nonbinary values.

13. The method of claim 1, wherein said edge weights of
said primary network have nonbinary positive and negative
values.

14. The method of claim 1, wherein said edge weights
represent distances between locations.

15. The method of claim 1, wherein said primary network
is designed to model motion of a machine tool.

16. A computer system in support of solving an
NP-complete-type problem, said computer system compris-
ing:

recording means recording in a memory of said computer

system a primary network having N nodes represented
by a matrix of edge weights;
forming means forming an equivalent representation of
said primary network as a set of N subnetworks,
wherein each of said N subnetworks has a like number
of nodes and all edges incident to one node of each of
said N subnetworks have zero weight;
improving means improving a present path by application
of reordering rule means for reordering nodes of said
subnetworks successively utilizing data from each of
said N subnetworks until for a complete cycle of
application of data from each of said N subnetworks to
said reordering rule means, no subnetwork is reordered;

transforming means transforming by application of edge
weight changing rule means for changing weights of
edges of said subnetworks successively utilizing data
from each of said N subnetworks until for a complete
cycle of application of data from each of said N
subnetworks to said edge weight changing rule means,
no edge weight is changed; and
repeating means repeating application of said reordering
rule means and said edge weight changing rule means
until said path cannot be reordered by application of
said reordering rule means, and said edge weights
cannot be changed by application of said edge weight
changing rule means.
17. The computer system of claim 16, wherein said
reordering rule means includes means for comparing a
weight of a connecting edge connecting a certain node of
said path to an edge weight of non-incident edges of said
path.
18. The computer system of claim 16, wherein said
reordering rule means includes:
comparing means for comparing a weight of a connecting
edge connecting a connected node of said path to edge
weights of non-incident edges of said path; and

means responsive to said comparing means for interpos-
ing said connected node between nodes of said path
incident to an edge having greater weight than a weight
of said connecting edge.

19. The computer system of claim 16, wherein said edge
weight changing rule means includes testing means for
testing whether a connecting edge of said path has greater or
equal weight than weights of remaining non-incident edges
of said path.

20. The computer system of claim 16, wherein said edge
weight changing rule means includes:

testing means for testing whether a connecting edge of

said path has greater or equal weight than weights of

remaining non-incident edges of said path; and
means responsive to said testing means for reducing

weights of certain edges of said set of subnetworks.

US 6,636,840 B1

17

21. The computer system of claim 16, wherein said
computer system further includes means for storing said
present path as a minimal Hamiltonian path when said path
cannot be reordered by application of said reordering rule
means, and said edge weights cannot be changed by appli-
cation of said edge weight changing rule means.

22. The computer system of claim 16, wherein said
computer system further includes the step of storing a cycle
associated with said present path as a minimal Hamiltonian
cycle when said path cannot be reordered by application of
said reordering rule means, and said edge weights cannot be
changed by application of said edge weight changing rule
means.

23. The computer system of claim 16, wherein a first
execution of said improving means occurs prior to a first
execution of said transforming means.

24. The computer system of claim 16, wherein a first
execution of said transforming means occurs prior to a first
execution of said improving means.

25. The computer system of claim 16, wherein said
forming means applies equivalent subnetwork formation
rules to said primary network.

26. The computer system of claim 16, wherein said edge
weights of said primary network have binary values.

27. The computer system of claim 16, wherein said edge
weights of said primary network have nonbinary values.

28. The computer system of claim 16, wherein said edge
weights of said primary network have nonbinary positive
and negative values.

29. The computer system of claim 16, wherein said edge
weights represent distances between locations.

30. The computer system of claim 16, wherein said
primary network is designed to model motion of a machine
tool.

31. A memory device including a program for execution
by a computer system, wherein said program configures said
computer system to:

record in a memory of said computer system a primary

network having N nodes represented by a matrix of
edge weights;

form an equivalent representation of said primary network

as a set of N subnetworks, wherein each of said N
subnetworks has a like number of nodes and all edges
incident to one node of each of said N subnetworks
have zero weight;

improve a present path by application of reordering rule

means for reordering nodes of said subnetworks suc-
cessively utilizing data from each of said N subnet-
works until for a complete cycle of application of data
from each of said N subnetworks to said reordering rule
means, no subnetwork is reordered;

transform by application of edge weight changing rule

means for changing weights of edges of said subnet-
works successively utilizing data from each of said N
subnetworks until for a complete cycle of application of
data from each of said N subnetworks to said edge
weight changing rule means, no edge weight is
changed; and

repeat application of said reordering rule means and said

edge weight changing rule means until said path cannot
be reordered by application of said reordering rule
means, and said edge weights cannot be changed by
application of said edge weight changing rule means.

32. The memory device of claim 31, wherein said reor-
dering rule means includes means for comparing a weight of
a connecting edge connecting a certain node of said path to
an edge weight of non-incident edges of said path.

33. The memory device of claim 31, wherein said reor-
dering rule means includes:

comparing means for comparing a weight of a connecting

edge connecting a connected node of said path to edge
weights of non-incident edges of said path; and

10

15

20

25

30

35

40

45

50

55

60

65

18

means responsive to said comparing means for interpos-
ing said connected node between nodes of said path
incident to an edge having greater weight than a weight
of said connecting edge.

34. The memory device of claim 31, wherein said edge
weight changing rule means includes testing means for
testing whether a connecting edge of said path has greater or
equal weight than weights of non-incident edges of said
path.

35. The memory device of claim 31, wherein said edge
weight changing rule means includes:

testing means for testing whether a connecting edge of
said path has greater or equal weight than weights of
non-incident edges of said path; and

means responsive to said testing means for reducing

weights of certain edges of said set of subnetworks.

36. The memory device of claim 31, wherein said pro-
gram of said memory device further configures said com-
puter system to store said present path as a minimal Hamil-
tonian path when said path cannot be reordered by
application of said reordering rule means, and said edge
weights cannot be changed by application of said edge
weight changing rule means.

37. The memory device of claim 31, wherein said pro-
gram of said memory device further configures said com-
puter system to store a cycle associated with said present
path as a minimal Hamiltonian cycle when said path cannot
be reordered by application of said reordering rule means,
and said edge weights cannot be changed by application of
said edge weight changing rule means.

38. The memory device of claim 31, wherein said pro-
gram configures said computer system so that a first appli-
cation of said reordering rule means is prior to a first
application of said edge weight changing rule means.

39. The memory device of claim 31, wherein said pro-
gram configures said computer system so that a first appli-
cation of said edge weight changing rule means is prior to a
first application of said reordering rule means.

40. The memory device of claim 31, wherein said pro-
gram configures said computer system to apply equivalent
subnetwork formation rule means utilizing said edge
weights of said primary network.

41. The memory device of claim 31, wherein said pro-
gram configures said computer system so that said edge
weights of said primary network have binary values.

42. The memory device of claim 31, wherein said pro-
gram configures said computer system so that said edge
weights of said primary network have nonbinary values.

43. The memory device of claim 31, wherein said pro-
gram configures said computer system so that said edge
weights of said primary network have nonbinary positive
and negative values.

44. The memory device of claim 31, wherein said pro-
gram configures said computer system so that said edge
weights represent distances between locations.

45. The memory device of claim 31, wherein said pro-
gram configures said computer system so that said primary
network is designed to model motion of a machine tool.

46. The memory device of claim 31, wherein said memory
device is transportable.

47. The memory device of claim 31, wherein said memory
device is a floppy disk.

48. The memory device of claim 31, wherein said memory
device is a compact disk.

#* #* #* #* #*

