PCGrate® v.6.7.1

International Intellectual Group Inc. (I.I.G., Inc.)

is a world leader in modeling of the diffraction gratings efficiency for spectroscopy, astronomy, telecommunications, photolithography, and nanotechnology

66 Villa Nova St., Staten Island, N.Y. 10314-6032, U.S.A.

pcgrate.com infosal@pcgrate.com

Copyright © 1996-2023 International Intellectual Group, Inc. (I.I.G., Inc.)

PCGrate[®] Software Worldwide • Company History

- PCGrate[®] Capabilities
- PCGrate[®] Results
- PCGrate[®] Advantages

• PCGrate[®] Distributors

Since our commercial debut, we sold more than 500 packages to recognized governmental & military laboratories, private companies, universities and research centers.

Company History

Our company has a wealth of experience in diffraction efficiency modeling of various types of relief and phase gratings. The most important outcome of our 30 years' work was the advent of PCGrate[®], a modeling tool for analysis and optimization of the absolute diffraction gratings efficiency by an accurate boundary integral equation method. Development of such sophisticated software became possible as a result of the multidisciplinary collaboration between many experts in the domains of theoretical physics, applied mathematics, and computer science.

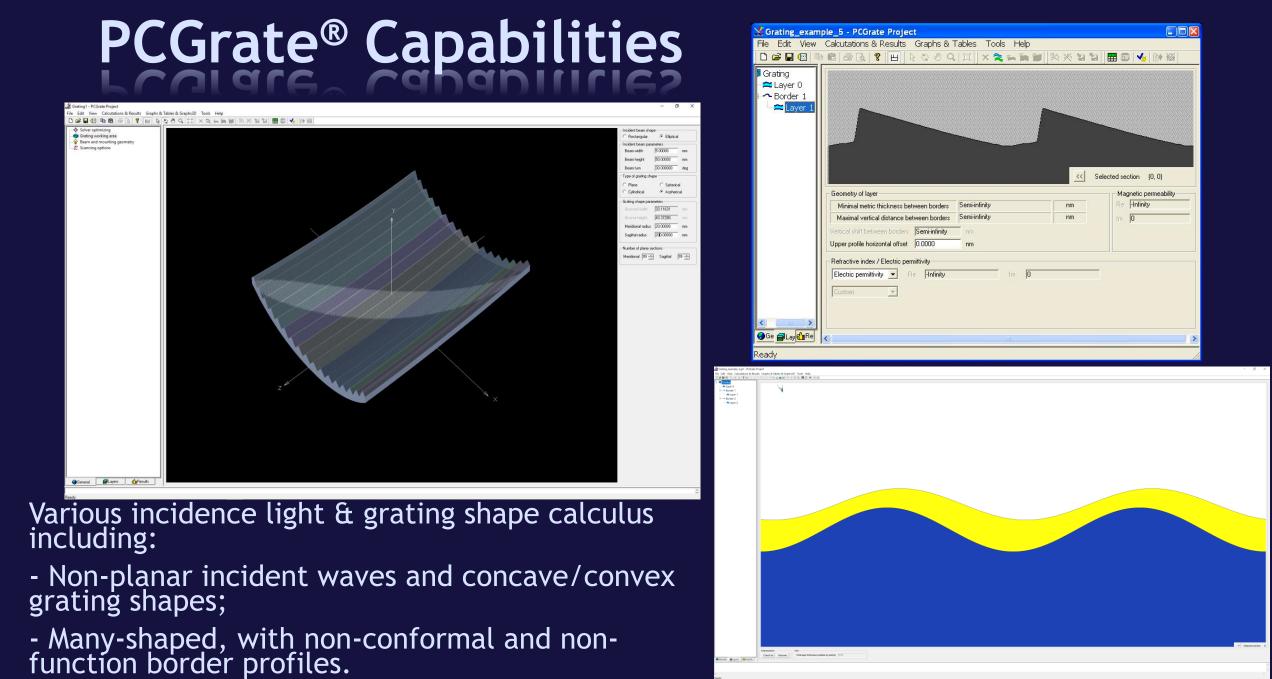
All that time our team has been working in collaboration with world-leading manufactures of ruled and holographic diffraction gratings, as well as with governmental laboratories and private companies. The PCGrate (earlier known as ProGrate and PC Grate) team was the first to create commercially available, PC-oriented software for exact analysis and optimization of the efficiency of relief and phase gratings. In 1989 the first PCGrate worked well enough under DOS on a PC/AT (or even XT!) with only 640 KB of RAM.

Today optical engineers and scientists all over the world make use of PCGrate \mathbb{R} -S(X)^M codes as a research tool to simulate spectroscopic and micro/nano-electronic & photonic systems.

Company History

Our specialists live in Russia, United States, Canada, and Germany. We implement a true international cooperation, regularly perform distributed project development via the internet, and partly place our R&D orders in well-established companies. We are open to any questions or proposals pertaining to related scientific research and software development. Our experts take active part in various international conferences/projects and publish many articles in prestigious scientific journals.

The prime object of our activity is to bridge the gap between theory and experiment for all types of gratings, and to provide researchers with more versatile tools and methods for increasing performance of the next generation of photonics devices. That also becomes possible owing to our collaborators from:


- NASA GSFC
- NRL Space Science Division
- Richardson Gratings of Newport Corp.
- Laurence Berkeley National Laboratory

PCGrate® Capabilities	Wavelength (λ) 1.0000 nm Type of wave front shape Plane Cylindrical Spherical Gaussian
TE TE Te Te Te Te Te Te Te Te Te Te Te Te Te	Inter shape General [General] General [General] Angular divergence (300,000000) deg Number of plane waves Newset Meridional [Inter for general] Type of diffraction Classical (in-plane) Conical (off-plane) Azimuth angle \$85,000000 deg
TM Option must control to December 2010	N0 Example Based Factors for number F TE (P) TM (S) NP ((P+S)/2) General V0 rander F Big 00000 eg Polarization angle δ 45.0000000 deg Phase difference Ψ 0.0000000 deg Frequency (f) 10000.0000000 1/mm Period (d) 0.10000000000 mkm
	Optical mount configuration General Const AD Echelle Bragg Blazed FixFocu Constant A.D. order number -1 ÷

PCGrate[®] programs enable the user to accurately solve periodic boundary value problems^{*}, which describe the incidence of a light beam on the relief or phase diffraction grating, zone plate & rough mirror.

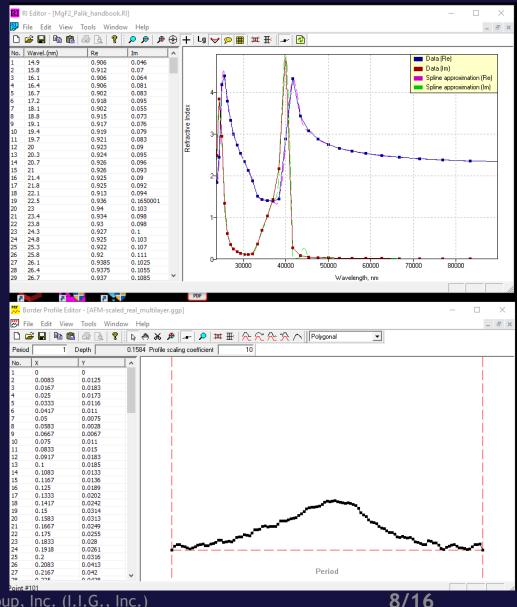
*Goray, L. I. & Schmidt, G. (2014). In *Gratings: Theory and Numerical Applications*, E. Popov, ed., Ch.12: https://www.fresnel.fr/files/gratings/Second-Edition/Chapter12.pdf

Deviation angle IN 000000

Copyright © 1996-2023 International Intellectual Group, Inc. (I.I.G., Inc.)

PCGrate[®] Capabilities

Grating_example_3.grt - PCGrate Project	c cahanıı	CIS2	-Solver type
File Edit View Calcutations & Results Graphs & Tables & Gr			
] 🗅 🚔 🖬 🗐 🖬 💼 🚑 🖪 🧣 🔲 🔛	<u>□</u> ×≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈	Penetratin	g Separating Separating
Solver optimizing Grating working area Beam and mounting geometry	Solver type Penetrating Separating		
🦾 👯 Scanning options	Computation algorithm Gauss FOM	A multi-boundary	A multi-boundary grating
Type of low border conductivity Perfect Finite		grating model which can be calculated witl	h model with plain gaps
	Accuracy optimization Accelerating convergence Equal S-interval	the Penetrating solver only	Derween two adjacent
	Number of collocation points 50 . Maximal number of accountable 33 . +/- terms or orders		
	Solver options Enable cache Enable paralleling Save near field parameters	<u>(()</u> Selected sectors	0.0 (c) Selection 0.0

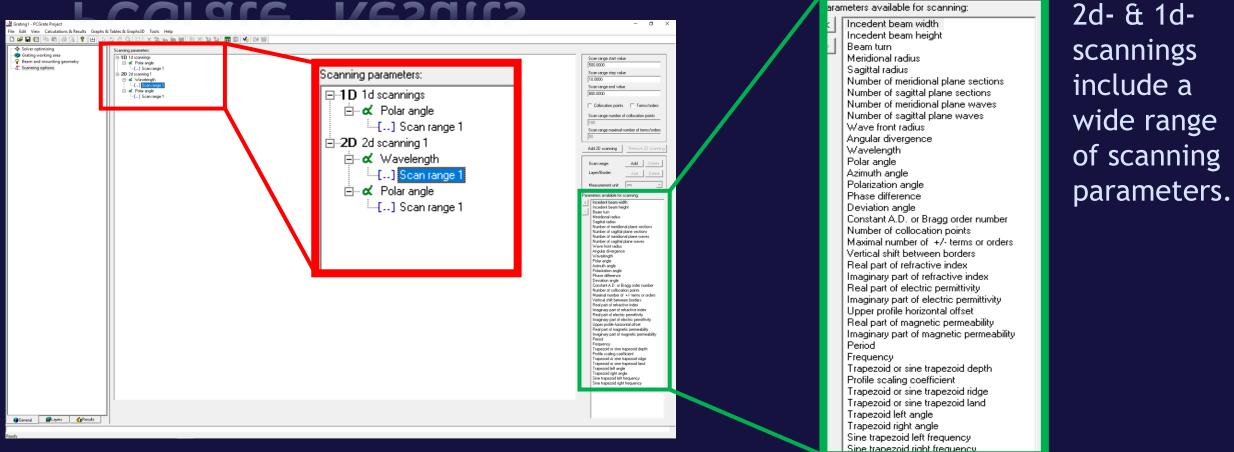

There are two types of solvers available in **PCGrate**[®], i.e. *Penetrating* and *Separating*. The solvers have different behavior and mutually complementary capabilities for many difficult cases such as coated gratings with thin layers, randomly rough periodical or non-periodical structures, grazing incidence, and photonic crystals.

PCGrate[®] Capabilities

PCGrate[®] software also includes two separate applications:

- Refractive Index Editor is a tool for working with Refractive Indices Libraries. You can create new libraries, view their contents, edit them, and import/export them. It has a multiple document interface, i.e. you can open as many documents for editing as you wish.
- Border Profile Editor is a tool that enables you to edit the files that contain border profile functions of grooves.

RI & Border Profile Editors:

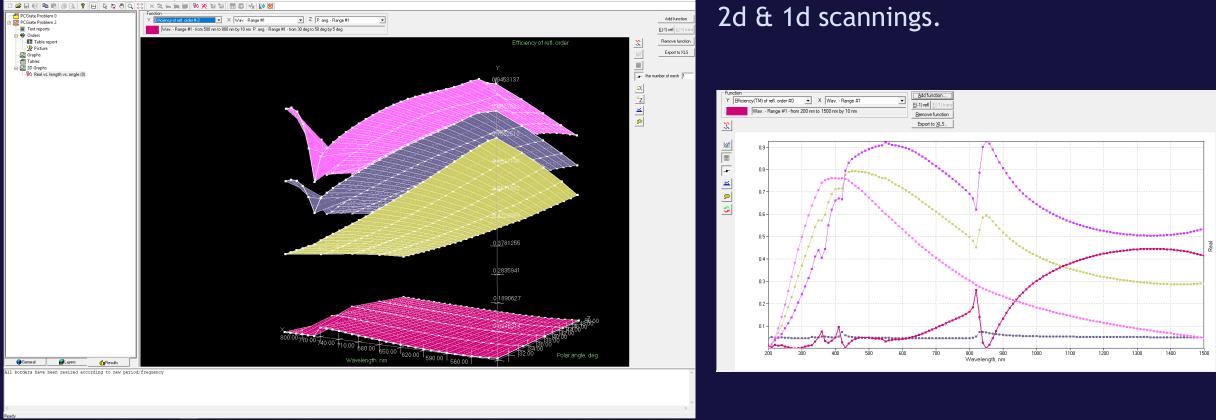

PCGrate[®] Results

There are a lot of output formats:

		Scan step	Bal.	Bal.(TE)	Bal.(TM)	Eff.(-1,R)	Eff.TE(-1,R)	Eff.TM(-1,R)		<u> </u>	ر ان ج	Grating ex	ample 4 Far	Field Parame	ters Azimut	Q- Search	h Sheet	
	I.I.G., Inc. Grating example 0	Az. ang. (76.8 deg)	0.999637	0.999701	0.999573	0.8817	0.7984	0.9650						Review Vi				Share ^
Solved at: 01/25/21 22:53:53		Az. ang. (76.9 deg)	0.999627	0.999696	0.999558	0.8766	0.7913	0.9620	Home	ert Draw	Page Layout	Formula						snare ~
Calculating time: 00:00:07	•	Az. ang. (77.0 deg)	0.999622	0.999691	0.999552	0.8711	0.7841	0.9581	a 👘 👘 🖓 🗸 💑	Calibri (Body)	• 11 •	A- A-	= = _	[₽] ' %		ditional Formatting	* I++I - * (Q .
		Az. ang. (77.1 deg)	0.999618	0.999686	0.999550	0.8651	0.7766	0.9536				Δ.	= = =	···· 70	Form	nat as Table *	0-11-	
		Az. ang. (77.2 deg)	0.999616	0.999682	0.999550	0.8588	0.7690	0.9487	Paste	<u>в 1 П</u>	* <u>- *</u> * <u>*</u>	· A ·	•I •I 🗞	* Numb	er 📝 Cell :	Styles *	Cells	Editing
Far Field Parameters Report fo	or scanning step	Az. ang. (77.3 deg)	0.999615	0.999677	0.999553	0.8522	0.7611	0.9433	1 D	$\langle \sqrt{f_x} 0$.998588198280	613						
		Az. ang. (77.4 deg)	0.999615	0.999672	0.999558	0.8454	0.7531	0.9376	• •	, , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	010						
		Az. ang. (77.5 deg)	0.999616	0.999668	0.999563	0.8383	0.7450	0.9316	4	4	В	С	D	E	F	G	н	1
SCANNING PARAMETERS		Az. ang. (77.6 deg)	0.999617	0.999664	0.999570	0.8310	0.7367	0.9252	1 PCGrate	SX 6.7.1 (c)1	996-202011	G Inc						
Scanning over: Polar angle		Az. ang. (77.7 deg)	0.999619	0.999660	0.999578	0.8234	0.7283	0.9186		5X 0.7.1 (C)1	550-2020 1.1.	.o., mc.						
	com 30.000000 deg to 50.000000 deg by 5.000000 deg)	Az. ang. (77.8 deg)	0.999622	0.999656	0.999587	0.8157	0.7197	0.9116	2									
Step number: 1 (Polar angle =		Az. ang. (77.9 deg)	0.999625	0.999653	0.999597	0.8077	0.7110	0.9044	3 Grating e	xample 4								
Default number of collocation						0.7996	0.7021	0.8970	4 Solved at		25.01.2021	22:54:56	6					
Current number of collocation		Az. ang. (78.0 deg)	0.999628	0.999649	0.999607				5 Calculatin	ng time 00	:00:31							
Default Maximal number of acco	ountable +/- terms/orders = 50	E Lef.ang., Item: 1 (5.0 deg)		0.999565	1.000258	0.6692	0.5929	0.7454	6									
Current Maximal number of acco	ountable +/- terms/orders = 50	Lef.ang., Item: 1 (5.1 deg)		0.999596	1.000498	0.6886	0.6118	0.7655	0									
		Lef.ang., Item: 1 (5.2 deg)		0.999635	1.000741	0.7077	0.6305	0.7850		Parameters I	Report for sc	anning ste	p					
		Lef.ang., Item: 1 (5.3 deg)		0.999682	1.000986	0.7264	0.6489	0.8039	8 Azimuth a	angle								
Energy balance	= 1.00006605656185043607	Lef.ang., Item: 1 (5.4 deg)		0.999551	0.999573	0.7436	0.6665	0.8206	9 Range nu	mber: 1 (fror	n 65.000000) deg to 80	.000000 deg	y by 1.00000) deg)			
Absorption	= 0.05034969754006921039	Lef.ang., Item: 1 (5.5 deg)	0.999686	0.999588	0.999785	0.7612	0.6842	0.8382	10 Step num	ber: 1 (Azimi	th angle = 6	5 000000	deg)		0.			
Reflected energy	= 0.94971635902178119792 = 0.0000000000000000000	Lef.ang., Item: 1 (5.6 deg)	0.999816	0.999631	1.000000	0.7783	0.7016	0.8550	10 5000 10	Der. 1 (Falini	attrangic = 0		ucb/					
Transmitted energy Phase of incident radiation	= 112.50000184807943526266 deg	Lef.ang., Item: 1 (5.7 deg)	0.999949	0.999680	1.000217	0.7948	0.7184	0.8711	11									
Condition number	= 1092.23039470031017117435	Lef.ang., Item: 1 (5.8 deg)	1.000086	0.999735	1.000437	0.8107	0.7348	0.8865	12 Trapezoid	d left angle								
Critical angles parameter	= 0.00000000000000000000000000000000000	Lef.ang., Item: 1 (5.9 deg)	1.000226	0.999794	1.000659	0.8259	0.7507	0.9010	13 Range nu	mber: 1 (fror	n 5.000000 (deg to 10.0	000000 deg l	by 0.100000	deg)			
Energy balance TE	= 0.99996840994987634677	Lef.ang., Item: 1 (6.0 deg)		0.999583	0.999372	0.8395	0.7657	0.9133	14 Step num	ber: 1 (Trape	zoid left and	zle = 5.000	000 deg)					
Absorption TE	= 0.03721897901026068045	Lef.ang., Item: 1 (6.1 deg)		0.999634	0.999568	0.8533	0.7804	0.9261	15			,						
Reflected energy TE	= 0.96274943093961573570	Lef.ang., Item: 1 (6.2 deg)		0.999687	0.999767	0.8663	0.7945	0.9380	15		000500400							
Transmitted energy TE	= 0.00000000000000000000000000000000000	Lef.ang., Item: 1 (6.3 deg)		0.999745	0.999968	0.8785	0.8080	0.9490	16 Energy ba		998588198							
Energy balance TM	= 1.00016370317382397026	Lef.ang., Item: 1 (6.4 deg)		0.999804	1.000171	0.8899	0.8208	0.9590	17 Absorptio	n	0							
Absorption TM	= 0.06348041606987772645	Lef.ang., Item: 1 (6.5 deg)		0.999866	1.000375	0.9004	0.8328	0.9681	18 Reflected	l energy 0,	998588198							
Reflected energy TM	= 0.93668328710394621606	Lef.ang., Item: 1 (6.6 deg)		0.999929	1.000580	0.9101	0.8441	0.9761	19 Transmitt	ted energy	0							
Transmitted energy TM	= 0.000000000000000000	0, 0		0.999929	0.999381	0.9180	0.8543	0.9818		incident r 97	7 04220052							
		Lef.ang., Item: 1 (6.7 deg)		0.999677		0.9180	0.8543	0.9877			,							
Reflected orders:		Lef.ang., Item: 1 (6.8 deg)			0.999567				21 Condition	number 24	13,3984946							
Registeren (andens 1)	- 0 0000000000000000	Lef.ang., Item: 1 (6.9 deg)		0.999789	0.999754	0.9326	0.8728	0.9925	22 Critical a	ngles para	0							
Efficiency (order: -1) Efficiency (TE) (order: -1)	= 0.62820275853475060490 = 0.32322798371035710296	Lef.ang., Item: 1 (7.0 deg)		0.999846	0.999942	0.9385	0.8808	0.9962										
	= 0.93317753335914377377	Lef.ang., Item: 1 (7.1 deg)		0.999902	1.000130	0.9434	0.8880	0.9987	♦ Shee	et 1 +					_			
particiency (in) (brder1)	- 0.3331//33333113//3//	Lef.ang., Item: 1 (7.2 deg)	1.000137	0.999957	1.000317	0.9472	0.8942	1.0001	i]							I 🗉 – —	+	160%

Results can be presented in any convenient format: classical text reports, Tables, and 2D or 3D Plots. Obtained results can be also exported to *.csv* or *MS Excel*® formats.

PCGrate® Results


PCGrate[®] includes 2d scanning & 3d efficiency plots. 2d scanning allows one to vary two independent parameters together to solve grating efficiency tasks.

arameters available for scanning:

PCGrate[®] Results

Edit View Calcutations & Results Graphs & Tables & Graphs3D

PCGrate[®] uses modern Graphical User Interface with 3d and 2d Open GL graphs.

Copyright © 1996-2023 International Intellectual Group, Inc. (I.I.G., Inc.)

PCGrate[®] Advantages

Our codes are indispensable for efficiency calculations in the following problems:

- -The x-ray-EUV range and very small wavelength-to-period ratios.
- Echelles and grisms at diffraction order numbers ranging from low to very high (thousands).
- Taking rigorously into account periodical and random roughnesses of any kinds.
- Rigorously accounting diffuse light intensity (ghosts and scattering).
- Pulse compression and high conductivity.
- 1-D & 2-D photonic crystals and multilayers with rough and non-conformal borders.
- Very deep reflection and transmission grooves (aspect ratios up to hundreds).
- Non-planar incident waves and concave/convex grating shapes.
- Any polarization states and other fine peculiarities.

The codes are especially convenient and accurate for modeling with the real border profile function. An example of this type is the case of groove profiles determined by: an atomic-force microscope (AFM), a transmission electron microscope (TEM), a micro-interferometer, a stylus profilometer, and also by indirect methods like actual growth modeling, etc.

PCGrate[®] Advantages The PCGrate[®]-S(X)[™] v. 6.7.1 32/64-bit series available for Windows OS machines from Windows Vista[™] to Windows 10.

Key parameter	PCGrate [®] -S [™] v.6.7.1	PCGrate [®] -SX™ v.6.7.1			
Wavelength	From x-rays to meters				
Minimal wavelength-to-period ratio	0.02	2e-13			
Diffraction order range	± 100	± 10000			
Maximal number of layers	20	10000			
Non-periodical structures, non- function border profiles & photonic crystals		Yes			
Rigorously accounting random roughness		Yes			
Gaussian beams, concave/convex & VLS gratings	,	Yes			

PCGrate[®] Interface types

Interface type availability	XML	GUI	Complete
Graphical User Interface	No	Yes	Yes
Command Line Interface	Yes	No	Yes

PCGrate[®] Advantages

There are two types of PCGrate® licenses available:

Key parameter	Permanent	Perpetual
Upgrades	Not included	Included
Tech support	1 year	2 years
Key types	USB and SL	SL only

PCGrate[®] Distributors

Wuhan Asdoptics Science And Technology Co., Ltd.

Optical ValleyTimes Square, 111 Guanshan Avenue, Donghu New Technology Development Zone, Wuhan, Hubei 430000, China

www.asdoptics.com

ruby@asdoptics.com

Holographic Company

Jhawar Kunj, Kotri Goverdhanpura, Kota, Rajasthan 324007, India

www.genuineholographics.com

traceprosoftware@gmail.com